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ABSTRACT
Existing traffic monitoring approaches cannot completely cover all
road segments in real-time, leading to massive amounts of miss-
ing traffic data, which limits the implementation of intelligent
transportation systems. Most existing methods lack deep mining
of the unique spatiotemporal characteristics of traffic flows, result-
ing in difficulty in application to urban traffic with complex topol-
ogies and variable states. In this paper, we propose a novel
Spatio-Temporal constrained Low-Rank Tensor Completion (ST-
LRTC) method, which adopts a manifold embedding approach to
depict the local geometric structure of spatiotemporal domains.
Specifically, under the low-rank assumption, the method introdu-
ces temporal constraints based on the continuity and periodicity
of traffic flow and a spatial constraint matrix reflecting the traffic
flow transmission mechanism. We embed low-dimensional spatio-
temporal constraint matrices into the low-rank tensor completion
solving process to fully utilize the global features and local spatio-
temporal characteristics of the traffic tensor. Experiments were
performed using traffic data from Xi’an, China, and the results
indicated that ST-LRTC outperformed state-of-the-art methods
under various missing rates and patterns. Thorough experiments
have demonstrated that the incorporation of spatiotemporal ana-
lysis can enhance the adaptability of the tensor completion model
to complex urban scenarios, which guarantees better monitoring,
diagnosis, and optimization of urban traffic states.
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1. Introduction

Accurately monitoring traffic states is the foundation of Intelligent Transportation
Systems (ITS), supporting both travelers to plan the optimal routes and policymakers
to develop effective strategies to improve traffic operating efficiency (Chen et al. 2020,
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Wang et al. 2019). However, due to the limitations of installation cost, uneven spatial
distribution, and unstable equipment operation status, existing traffic monitoring
approaches (including loop detectors (Chen et al. 2003), microwave sensors (Rodrigues
et al. 2011), road-side cameras (Douxchamps et al. 2006), and floating-cars (Li et al.
2011a)) are unable to cover all the road segments in real-time. As a result, there are
massive missing values within the obtained traffic states (Yuebiao et al. 2014, Wang
et al. 2019). According to the Texas Transportation Institute, the rate of missing data
often reaches more than 50% and even exceeds 90% at times (Smith et al. 2003, Tan
et al. 2013), which seriously restricts the development of smart cities and ITS, such as
traffic forecasting (Fang et al. 2022), movement pattern analysis (Dodge et al. 2020),
travel time estimation (Tang et al. 2016), and anomaly detection (Sofuoglu and
Aviyente 2022).

Therefore, the accurate and efficient reconstruction of missing data in urban road
networks to support monitoring, diagnosis, and optimization of the entire urban traffic
states has become the focus of urban perception and transportation research.

Theoretically, a high-dimensional tensor is a desirable representation of spatiotem-
poral field data with multi-dimensionality, such as traffic speed data (Li et al. 2022).
Based on this, tensor operators (e.g. tensor decomposition and tensor reconstruction)
can reveal the intrinsic structure of complex spatiotemporal data and capture interde-
pendencies in multiple dimensions. Accordingly, in this study, we represent traffic
states (e.g. traffic speed and traffic flow) with a tensor XRoad�Time�Day to highlight dif-
ferent dimensional properties, thus facilitating accurate traffic data imputation.

Furthermore, owing to the cyclical nature of travel behavior and the interconnec-
tion of neighboring road segments, traffic states are highly correlated in the temporal
and spatial domains (Wang et al. 2019, Feng et al. 2022). Many scholars have gradually
focused on the low-rank characteristics of traffic data and have attempted to estimate
missing data using compressed sensing theories, such as low-rank tensor decompos-
ition (Chen et al. 2020, Ji et al. 2012) and tensor principal component analysis (Feng
et al. 2022).

However, most existing low-rank tensor-based methods estimate values from a
data-driven perspective by exploiting only the implicit regularities of the data. These
methods do not consider the spatiotemporal characteristics of geographic elements,
which makes their application in real scenarios problematic. Given the complexity of
urban scenes and the applicability of low-rank tensors, critical challenges exist in traffic
state imputation.

� Accurate estimation. Traffic data are usually disturbed by noise, which affects the
mining of the spatiotemporal features of traffic states. However, the development
of accurate and robust imputation models remains an unexplored avenue.

� Urban Scenarios. Most existing methods do not consider the structural properties
of road networks or the evolution patterns of traffic flows, making their application
to complex urban road scenarios difficult. Hence, fully exploring the spatiotemporal
correlation characteristics of traffic states and developing a model that is more
applicable to urban traffic data imputation is still a research hotspot.
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� Extreme absence. In practice, most cities deploy sensors only on a few critical road-
ways. Even worse, even in this part of the data, there are inevitable sparse or miss-
ing data owing to collection imperfections, equipment failures, etc. Accordingly,
traffic data imputation in extreme missing cases, that is, high missing rates and
nonrandom absences, is crucial for fine-grained urban perception.

Intuitively, the incorporation of geographic methods and thinking endows tensor
models with explicit representations of spatiotemporal patterns, thereby facilitating
the practical application of high-dimensional tensor theory in real scenarios, such as
urban perception and geospatial analysis. Here, we propose a temporally continuous,
spatially regularized, and more compact low-rank tensor model, named Spatio-
Temporal constrained Low-Rank Tensor Completion (ST-LRTC), for urban traffic speed
data imputation. The main contributions of the proposed method are as follows:

� We adopted a low-rank tensor model to mine the global spatiotemporal properties
of traffic data. Inspired by CHEN et al. (2020), we introduced a truncated nuclear
norm as a tighter nonconvex alternative to the tensor low-rank function to achieve
more accurate estimates of urban traffic states.

� Based on the low-rank assumption, we adopted a manifold embedding approach
to depict the local geometric structure across each mode and propose a K-order
proximity-based ‘static road topology & dynamic traffic flow’ co-driven approach
for road network spatial similarity metrics. Spatiotemporal constraints explicitly
express the continuity, periodicity, and transitivity of traffic flow, which can provide
prior knowledge of the reconstruction process of missing data to enhance
reliability.

� Under extreme scenarios with large missing rates or nonrandom missing patterns,
the proposed method can still achieve stable and accurate imputation results, illus-
trating the applicability and robustness of ST-LRTC in complex road networks.

The remainder of this paper is organized as follows. In Section 2, we provide a lit-
erature review of traffic data imputation. Preliminaries are provided in Section 3.
Section 4 introduces the key aspects of the ST-LRTC method. Section 5 evaluates per-
formance using a real traffic dataset. Finally, Section 6 concludes the study and pro-
vides directions for future research.

2. Related works

In recent years, compressed sensing-based sparse representation and its derivative,
Low-Rank Matrix Recovery (LRMR), have made significant progress in theoretical stud-
ies, making sparse representations more popular (Donoho 2006, Candes and Wakin
2008).

Owing to the daily life patterns and road network settings, traffic data tend to be
continuous, periodic, and spatially similar (Zhang et al. 2020). Therefore, traffic flow
data usually have low rank and sparse properties. Low-Rank Matrix Completion (LRMC)
exploits a low-rank structure to recover the missing data and uses convex relaxation
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iterations (e.g. singular value thresholding algorithm) to optimize the solution. In add-
ition, some scholars have incorporated Bayesian models into LRMC and developed
Bayesian Principal Component Analysis (BPCA) (Li et al. 2008), Probabilistic Principal
Component Analysis (PPCA) (Qu et al. 2009), and Kernel Probabilistic Principal
Component Analysis (KPPCA) (Li et al. 2013) to recover and reconstruct missing values
of matrices, and have obtained more accurate results at low missing rates.

However, the aforementioned matrix-based traffic data imputation methods tend to
operate on a two-dimensional traffic matrix with stacked columns, which results in the
natural multidimensional nature of traffic data being neglected. Consequently, matrix
completion methods always appear powerless when the missing rate is higher than
60% (Tan et al. 2013).

To fully exploit the implicit information of multidimensional data, tensor representa-
tions for data recovery have recently been investigated. Indeed, a tensor can encom-
pass more global information compared to a matrix such as an additional third
dimension representing time (Said and Erradi 2021). In the recent literature, the suc-
cessful recovery of tensor completion mainly relies on its low-rank assumption (Long
et al. 2019). These methods fall into two main categories: tensor-decomposition-based
methods and minimum-rank-based methods.

2.1. Tensor decomposition-based methods

Methods based on tensor decomposition always need to set a predefined rank and
then optimize the decomposed feature factors. CANDECOMP/PARAFAC (CP) decom-
position (Carroll and Chang 1970, Harshman 1970) and Tucker decomposition (Tucker
1966) are two representative tensor decomposition methods. Acar et al. (2011) pro-
posed a CP-weighted optimization algorithm with first-order optimization to solve a
weighted least-squares problem. Tan et al. (2013) constructed traffic data as a four-
dimensional tensor and used the Tucker decomposition method for tensor completion.
The superiority of the high-dimensional data-based form is confirmed by comparing
its results with those of a two-dimensional matrix. Goulart et al. (2017) proposed a ten-
sor completion algorithm based on Tucker decomposition kernel tensor iterative soft
thresholding, considering the strong correlation of traffic data.

To better capture the spatiotemporal correlation of traffic data to distinguish it
from other types of tensor imputation (e.g. image processing, computer vision, recom-
mender systems), Zhou et al. (2015) combined the factor matrices of CP decompos-
ition with spatiotemporal intramodal regularization, and proposed a spatiotemporal
tensor completion method to recover missing traffic data. Said and Erradi (2021) com-
puted an urban similarity matrix and incorporated feature vectors for each region into
the factors of the CP decomposition, in order to explicitly mine the intrinsic patterns
of traffic data.

Nevertheless, because the above models are nonconvex, they are subject to local
minima and depend on good initial values to perform well. Furthermore, in practice,
the tensor-rank bounds may not be available for certain applications. When only a few
observations are available, the selection of inappropriate rank bounds may lead to
underfitting or overfitting (Long et al. 2019).
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2.2. Overall minimum rank-based methods

The latter takes a global perspective and exploits the low-rank nature of traffic data to
determine the minimum rank in the overall structure. This avoids the selection and
analysis of the rank of individual feature factors and retains the inherent spatiotempo-
ral characteristics of traffic data. However, because the rank function is nonconvex, the
rank minimization problem is NP-hard (Hillar and Lim 2013).

Most existing methods (Ji et al. 2012, Hu and Work 2021, Sofuoglu and Aviyente
2022, Feng et al. 2022) used the nuclear norm (NN) as a convex surrogate for the non-
convex rank function and relax the problem of finding the minimum rank to minimize
the tensor nuclear norm when capturing the low-rank properties of spatiotemporal
data. Experiments have shown that these methods can achieve better results than CP
decomposition (Ji et al. 2012).

Although NN-based methods have achieved impressive results in multidimensional
data analysis, they have some limitations. Considering that the rank operator is non-
convex and discontinuous, the convex nuclear norm may not serve as a good approxi-
mation of the rank operator. Specifically, when seeking tensor rank minimization, the
NN explicitly considers each singular value equally and shrinks all singular values using
the same parameters. Nevertheless, in practical applications, larger singular values are
generally associated with salient spatiotemporal information in urban traffic patterns
and are therefore more important. Thus, the larger singular values should shrink less
to ensure that the essential traffic patterns are not corrupted (Cao et al. 2017).

To address this problem, many recent studies have begun to utilize certain noncon-
vex functions to approximate the rank function, one of which is the truncated nuclear
norm (TNN) (Hu et al. 2013). Unlike the nuclear norm, the TNN method minimizes only
the smallest (min(m, n) – r) singular values to retain the prominent intrinsic features of
the data (Zhang et al. 2012). For instance, Chen et al. (2020) replaced the original con-
vex nuclear norm with a TNN and proposed an LRTC-TNN model. Experiments demon-
strated that the tighter substitution function can better capture the low-rank nature of
the traffic tensor, which yields a more desirable imputation accuracy than the convex
substitution.

2.3. Research gap

Although current low-rank tensor completion models have achieved ideal results in
some cases (e.g. random missing cases and low missing-rate cases), they still face diffi-
culties when applied to real road scenarios.

1. Most methods are limited to extracting information from the tensor itself, and are
more inclined to estimate values from a data-driven perspective. They lack deep
mining of traffic spatiotemporal features (e.g. road network topology and traffic
flow evolution patterns), which are crucial for urban traffic data imputation with
complex structures and variable states.

2. In the bad case with large missing rates or non-random missing data (e.g. spatially
missing and temporally missing data), the implicit regularity of urban traffic is dif-
ficult to obtain accurately and completely from the limited observations by
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existing models, leading to unstable results or even failed reconstruction (Tan
et al. 2013).

Hence, the establishment of data imputation models that can be adapted to com-
plex urban scenarios and extreme missing cases is of great importance for the devel-
opment of ITS. Motivated by this intuition, the Spatio-Temporal constrained Low-Rank
Tensor Completion (ST-LRTC) is proposed in this paper and applied to urban traffic
speed data imputation.

3. Preliminaries

Throughout this study, we inherited the tensor definition as in Kolda et al. (2009).
Scalars vectors and matrices are denoted by lowercase letters, bold lowercase and
uppercase letters respectively, e.g. x, x 2Rn, X 2Rm�n. Tensors are denoted by bold
Eulerian letters, e.g. X 2Rm�n�t.

Definition 1 (Tensor construction): Assuming that there are M road segments, D
days, and T time intervals per day, the traffic state data can be constructed as a tensor
X 2 R

M�T�D in three dimensions (M road segments – T time intervals/day – D days),
as shown in Figure 1. The element value of Xm;t;d denotes the traffic state of the m-th
road segment at time interval t on day d.

Definition 2 (Tensor unfolding and folding): Matricization (unfolding) is the process
of reordering the elements of an N-dimensional tensor into a matrix. The unfolding of
a tensor X 2 R

I1� I2�����IN in mode-n can be expressed as XðnÞ, where the tensor elem-
ent (i1, i2, … , iN) is mapped to the matrix element (in, j). Essentially, the mode-n
unfolding operator arranges the n-th mode of X as a row (i.e. in), whereas the remain-
ing modes are the columns of the mode-n unfolding matrix (i.e. j). Mathematically, in
is the ordinal number of the elements in the unfolded mode, and j satisfies:

j ¼ i1 þ
X

k ¼ 1
k 6¼ n

Nðik � 1ÞJk with Jk ¼
Y

m ¼ 1
m 6¼ n

k�1
Im, (1)

where Im denotes the maximum index of the m-th dimension. For a more intuitive
explanation, we present an example of a three-dimensional tensor unfolding, as
shown in Figure 2.

Figure 1. Tensor construction and transformation.
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Similarly, we define a folding operator that converts a matrix into a higher-order
tensor in the nth-mode as foldn (�). Thus, we have foldnðXðnÞÞ ¼ X :

Definition 3 (Data missing patterns): In real-world scenarios, missing data may not
strictly adhere to a uniform and random distribution but rather be structurally missing
because of sensor malfunctions or communication failures (Deng et al. 2021, Qu et al.
2009, Wang et al. 2019). Therefore, we divide the cases of missing data in complex
urban scenarios into three categories, as shown in Figure 3.

� Random Missing Pattern (RM): In most cases, the loss of traffic data is random and
uniform. We simulate this situation by randomly dropping certain elements of the
traffic tensor.

� Spatial Missing Pattern (SM): Circumstances such as power shortages may result in
the loss of traffic data from sensors. This situation is simulated by dropping data
from multiple consecutive road segments.

� Temporal Missing Pattern (TM): Traffic data may be lost for some time due to dam-
age to the collection device or the disconnection of the wireless network.
Therefore, we randomly select sensors and drop the data from each selected sensor
at some consecutive time intervals to simulate this missing pattern.

Figure 2. Example of three-dimensional tensor unfolding.

Figure 3. Different missing patterns of traffic data. (a) Random missing pattern. (b) Spatial missing
pattern. (c) Temporal missing pattern.
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Definition 4 (Tensor imputation): also known as tensor completion. The purpose of
tensor imputation is to reconstruct the missing values using the observed data tensor.
Because traffic data are partially missing and only a subset of the tensor provides valid
traffic data (Ji et al. 2012, Tan et al. 2013, Chen et al. 2020), we introduce a mask oper-
ator to represent the part of the tensor where valid data exist, as in Equation (2):

PXðXÞ ¼ PXðZÞ, (2)

where X ,Z 2 R
M�T�D denotes the imputed and the original tensor data, respectively;

X represents the subset of valid observations. The operator PX : RM�T�D 7!R
M�T�D

is an orthogonal projection supported on X, which represents the valid observations
of X :

PXðXÞ½ �mtd ¼
Xmtd , ifðm, t, dÞ 2 X
0 , otherwise

:

�
(3)

4. Method

4.1. Low-rank tensor completion

Because of the cyclical nature of travel behavior and the interconnection of neighbor-
ing road segments, traffic data are highly correlated in the temporal and spatial
domains (Li et al. 2011b, Wang et al. 2019). Therefore, the tensor tends to be low-rank
or approximately low-rank (Chen et al. 2020, Ji et al. 2012), making the data imput-
ation problem a minimum-rank-seeking problem, as shown in Equation (4),

min rankðXÞ
s:t: PXðXÞ ¼ PXðZÞ : (4)

where X ,Z 2 R
M�T�D denotes the imputed and the original tensor data, respectively.

However, the optimization problem in Equation (4) is NP-hard because the function
rank (X ) is nonconvex. To address this issue, researchers have developed several con-
vex relaxation methods and nonconvex functions as alternatives to the rank minimiza-
tion problem (Hillar and Lim 2013, Chen et al. 2020, Ji et al. 2012).

The truncated nuclear norm, as a representative nonconvex substitution, can effect-
ively retain the prominent intrinsic features of the data and better capture the low-
rank characteristics of the traffic tensor (Chen et al. 2020). Thus, in what follows, we
use a truncated nuclear norm relaxation method to yield tight estimates of traffic data
with low-rank properties (Hu et al. 2013, Han et al. 2017, Huang et al. 2014).

Definition 5 (Truncated nuclear norm, TNN): Given a matrix X 2Rm�n, m and n are
non-negative integers. Suppose r�min (m, n), TNN jjXjjr, � is defined as the sum of
min (m, n) – r minimum singular values, that is,

jjXjjr, � ¼
Xminfm, ng

i¼rþ1

riðXÞ, (5)

where ri (X) is the i-th singular value of matrix X, sorted in descending order.
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To this end, the optimization problem in Equation (4) is eventually expressed as a
low-rank tensor completion based on minimization (Chen et al. 2020), as shown in
Equation (6):

minX
XN
i¼1

aijjX ðiÞjj ri , �

s:t: PXðXÞ ¼ PXðZÞ
, (6)

where i denotes the dimension index of the tensor X , and N denotes the total num-
ber of dimensions. ai s are constants satisfying ai 	 0 and

PN
i¼1 ai ¼ 1: The truncation

ri for each tensor mode satisfies:

ri ¼
�
h �min ni,

Y
k 6¼i

nk
� ��

, 8i 2 f1, 2, :::,Ng, (7)

where xd e denotes the smallest integer not less than x, ni denotes the maximal index
of the m-th dimension, and h controls the proportion of truncation in the different
modes of the tensor X .

Essentially, the truncated nuclear norm of a tensor is a combination of the trun-
cated nuclear norm of all matrices expanded in each mode. However, despite the
availability of tighter rank substitution functions, these methods fail to yield desirable
results, particularly when extreme absences occur. Because low-rank tensor completion
methods seek low-rank structures with typical patterns, they struggle to mine intrinsic
features from limited data when large missing rates occur, which limits the accuracy
of the estimates.

4.2. Spatio-temporal manifold embedding

The spatial and temporal autocorrelative characteristics of traffic flows are crucial for
missing data imputation (Zhang et al. 2020, Wang et al. 2019). Chronologically, traffic
flow evolves continuously over time, and the patterns are similar on different days.
Spatially, the traffic flow on each road segment is affected by its upstream and down-
stream segments. Thus, the traffic states of adjacent road segments are interrelated.

Accordingly, based on the low-rank assumption, we utilize the intrinsic relationships
of each mode (‘road segment’, ‘time interval’, and ‘day’) of the tensor as auxiliary infor-
mation to improve the quality of traffic data imputation. This approach is also known
as manifold learning, and the main idea is that if two objects are close in the intrinsic
geometry of the data manifold, they should be close to each other after dimensional-
ity reduction (Sofuoglu and Aviyente 2022, Li et al. 2017).

Specifically, considering that each mode of the tensor corresponds to a different
property of traffic data, we retained the relationship between each mode to better
mine the intrinsic features. Thus, two similar objects can behave similarly in the pro-
jected low-dimensional space by separately introducing spatiotemporal constraint
matrices on each mode. In the following, we describe the process of constructing the
spatio-temporal constraint matrices.
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4.2.1. Temporal constraint matrices
Based on Definition 2, Matrix X (2) is obtained by unfolding the original tensor X in
the time-interval mode, where the columns represent the traffic states for all moments
of the day on a certain road segment. The traffic states at moment t should be similar
to the adjacent moments t�1 and tþ 1, that is, jjX t�1

ð2Þ þX tþ1
ð2Þ � 2X t

ð2Þjj ! 0: In other
words, when differentiating the traffic data with two adjacent moments at moment t,
the values of the matrix mostly converge to zero, which indicates significant sparsity.
Because the L1-norm is a convex approximation of element-wise matrix sparsity and is
more robust to noise than the L2-norm (Cand�es et al. 2011), it can be used to better
capture sparsity. Thus, we utilize the matrix TP, as shown in Equation (8), to capture
the continuity of traffic data in the time interval mode, i.e. jjTPX ð2Þjj1, where TP ¼
Toeplitz (0,1,2,1).

TP ¼

1 �2 1 0 � � �
0 1 �2 1 . .

.

0 0 1 �2 . .
.

..

. ..
. . .

. . .
. . .

.

0
BBBB@

1
CCCCA

ðn�2Þ�n

(8)

Similarly, the traffic flow similarity between adjacent days is described by the matrix
TD, i.e. jjTDX ð3Þjj1, where TD ¼ Toeplitz (0,1,2,1). Note that we utilize the low-rank
Toeplitz matrices TP and TD to mine the local temporal relations of the urban traffic
data. By contrast, employing high-rank Toeplitz matrices tends to make the imputation
results oversmooth and lose detailed information of actual traffic states.

4.2.2. Spatial constraint matrix
In fact, the reliance on network topology for the transmission and mobility of traffic
elements (e.g. crowds, cabs, and trucks) is one of the most distinctive features that dis-
tinguishes urban transportation from other types of data imputation. In previous stud-
ies, most scholars adopted the ‘node-arc’ model to construct the topological
relationship of the road network, which usually uses 0/1 to indicate whether the road
segments are connected or not (Feng et al. 2022, Lin et al. 2018). Recently, some
researchers propose to construct an undirected local K-connected graph for data X
2Rm�n and encode it using a symmetric affinity matrix A 2Rn�n, where 0� aij �1
reflects the probability that points xi and xj are connected (Wang et al. 2019). Most
affinity matrices A are set by the Euclidean distance between roads (Li et al. 2018, Ye
et al. 2020).

However, such a static representation only reflects the topological structure of the
graph, and it is difficult to describe the transmission relationships between traffic flows
accurately. Even for geographically adjacent roads, road similarities are influenced by
factors such as road grade, convenience, and comfort. Intuitively, people prefer to
drive on a spacious and safe road rather than on an isolated narrow path, even
though it may be shorter.

To this end, we propose a K-order proximity-based ‘static road topology & dynamic
traffic flow’ co-driven method for spatial similarity measurement of road networks.
Laplace regularization is utilized to describe the dynamic correlations between
road segments and to sense the effects of abrupt changes in actual traffic conditions
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on their upstream and downstream parts. In summary, the introduction of spatial
correlation can be divided into three steps: calculation of traffic flow similarity, con-
struction of spatial constraint matrix, and embedding of Laplace regularization (Zhang
et al. 2020).

4.2.2.1. Calculation of traffic flow similarity. We exploit the dynamic traffic flow data
to calculate the transmission coefficient aij between adjacent roads. First, we normalize
the observations into the same range [0,1] using the min-max method to avoid the
maximum traffic observation being limited by its physical characteristics (Zhang et al.
2020). Thus, the data after min-max normalization can be expressed as:

~xidt ¼ xidt � xmin
i

xmax
i � xmin

i

(9)

where xidt denotes the traffic status of road i during time t on day d, and xmax
i and

xmin
i are the maximum and minimum observations of road i, respectively.
Furthermore, we adopt a z-score transformation (Yang et al. 2017) to remove the

daily periodicity of the traffic data and eliminate strong temporal autocorrelation in
the time series.

x̂ idt ¼
~xidt � �xit

rit
(10)

�xit ¼ 1
D

XD�1

d¼0

~xidt , rit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D� 1

XD�1

d¼0

ð~xidt � �xitÞ2
vuut (11)

where �xit and rit are the mean and standard deviation of the normalized traffic state
of road i at time t, respectively. D is the total number of days.

So far, the transmission coefficient aij between roads i and j can be calculated as
follows:

aij ¼
PD�1

d¼0

PT�1
t¼0 x̂ idt � �xið Þ x̂ jdt � �xj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD�1

d¼0

PT�1
t¼0 x̂ idt � �xið Þ2PD�1

d¼0

PT�1
t¼0 x̂ jdt � �xj
� �2q (12)

where �xi denotes the mean of the i-th horizontal slice of tensor X̂ : T is the total num-
ber of individuals per day. In Equation (12), the numerator denotes the covariance of
the observations on roads i and j, and the denominator represents the product of their
standard deviations.

4.2.2.2. Construction of spatial constraint matrix. With this, we can obtain the inter-
relationship of traffic flows on different road segments. In practice, two road segments
with a high correlation may not be geographically adjacent, which may cause faulty
estimation of traffic states. Instead, the transmission and feedback of traffic flows are
primarily based on the road network topology.

We introduce the K-order proximity in graph embedding into the construction of
spatial constraints to enhance the adaptability of traffic data imputation under com-
plex topologies and variable states (Yang et al. 2018). In Figure 4, for example, the
central bi-directional road A is adjacent to the surrounding B1
B6 roads in the first

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11



order, and C1
C15 roads in the second order. The spatial transferability of traffic flow
in bidirectional road networks is based on the turning relationships between roads. As
shown in Figure 4(b), roads B4, B5, and B6 are connected to bidirectional road A as its
upstream by a left turn, right turn, and straight ahead, respectively. This implies that if
traffic congestion occurs on road A, the traffic status of its surrounding roads (includ-
ing upstream B4
B6 and downstream B1
B3) will be affected, and the degree of
impact will depend on the similarity of the traffic flow patterns.

Therefore, this study combines the actual road topology with the dynamic traffic
flow interrelationship to construct a weighted graph to characterize the spatial rela-
tionships, which is expressed as

Aij ¼ aij if j is a K� order proximity of i
0 otherwise

:

�
(13)

4.2.2.3. Embedding of Laplace regularization. By constructing a spatial correlation
matrix A based on road topological relationships, we achieve an explicit characteriza-
tion of the local correlations of traffic states between roads. This enhances the adapt-
ability and robustness of traffic data imputation in complex urban scenarios. Thus, we
embed the spatial constraint matrix representing local geographic relationships into
the road-mode unfolding matrix X (1) of low-rank tensor, forming a joint spatial con-
straint with multi-perspective of ‘static & dynamic’ and ‘global & local’.

Specifically, we utilize the L1-norm to describe the local spatial constraints on the
traffic states between roads, i.e.

XN
i¼1

XN
j¼1

aij xi � xj
		 		 ¼ jjLAX ð1Þjj1 (14)

where LA ¼ D � A denotes the Laplace matrix and the degree matrix D2RN�N is a
diagonal matrix with diagonal elements dii ¼

PN
j ¼ 1 aij, i¼0; 1; . . .; N:

Figure 4. Bi-directional road network topology. (a) Bi-directional road A and its upstream and
downstream relationship (b) Turning relationship between road A and its upstream segments (B4,
B5, B6).
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4.3. Spatio-temporal constrained low-rank tensor completion

Although the low-rank tensor-based imputation method can capture some intrinsic char-
acteristics of traffic flow globally, it tends to suffer from information mining biases when
handling missing data imputation in complex urban scenarios. Explicitly considering the
unique spatiotemporal characteristics of traffic can provide a local perspective on
the imputation problem and be more consistent with urban traffic patterns. Meanwhile,
the embedding of manifold learning can also provide partial prior knowledge for the
imputation model and improve the convergence of iterations and operational efficiency.

To this end, under the assumption of a low-rank tensor, manifold learning is used to
improve the quality of data imputation by introducing relationships among data with
different mode-unfolding matrices as auxiliary information. In this section, we describe
in detail the low-rank tensor completion model under spatiotemporal low-dimensional
embedding. The overall framework of the proposed algorithm is given in Figure 5.

In particular, for a given incomplete traffic data Z we consider the global low-rank
property of traffic data and spatiotemporal correlations on the local scale. For the low-
rank property of the traffic data tensor, we approximate the rank function using a
more compact nonconvex function (TNN). Meanwhile, we adopt the spatiotemporal
low-dimensional embedding of manifold learning to capture the local characteristics
of traffic flows. Specifically, the temporal constraint matrices TD and TP are incorpo-
rated into the unfolding matrices to capture the periodicity and continuity, respect-
ively, and the spatial constraint matrix LA is used to represent the transitivity and
feedback of the traffic flow in the bidirectional road network.

In summary, by combining the global low-rank properties (Equation (6)) and the local
spatiotemporal correlations, the goal of data imputation is to consider both tensor nuclear
norm minimization and spatiotemporal constraints minimization, as in Equation (15),

minX
X3
k¼1

akjjX ðkÞjjrk þ b1jjLAX ð1Þjj1 þ b2jjTPX ð2Þjj1 þ b3jjTDX ð3Þjj1
s:t: PXðXÞ ¼ PXðZÞ

, (15)

where b1, b2, b3 are non-negative weights balancing the corresponding terms. For
brevity, we use Sk (k¼ 1,2,3) to denote the spatial and temporal constraint matrices
LA, TP, TD, respectively,

minX
X3
k¼1

akjjX ðkÞjjrk þ
X3
k¼1

bkjjSkX ðkÞjj1
s:t: PXðXÞ ¼ PXðZÞ

: (16)

Furthermore, considering the independence of nuclear norm optimization and the
convenience of L1-norm optimization, we introduce auxiliary tensor variables M and
~X k to avoid the dependence of the TNN solution on spatiotemporally constrained
optimization, and express the optimization model as follows:

minX k, ~X k,Qk,M
X3
k¼1

akjjX kðkÞjjrk þ
X3
k¼1

bkjjQkjj1
s:t: X k ¼ M, ~X k ¼ M, Qk ¼ Sk

~X kðkÞ ðk ¼ 1, 2, 3Þ
PXðMÞ ¼ PXðZÞ

: (17)
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Figure 5. The overall framework of ST-LRTC model for traffic data imputation.
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4.4. Solving ST-LRTC for traffic data imputation

A widely used approach to solve this optimization problem of Equation (17) is the
Alternating Direction Method of Multipliers (ADMM) framework (Boyd 2010).
Specifically, the Lagrangian function of problem (17) is

L ¼
X3
k¼1

akjjX kðkÞjjrk þ
X3
k¼1

bkjjQkjj1

þ
X3
k¼1

hX kðkÞ �MðkÞ,T kðkÞi þ h ~X kðkÞ �MðkÞ,GkðkÞi þ hQk � Sk
~X kðkÞ, Y ki


 �
(18)

with the definition hX,Yi ¼ trðXTYÞ: T k ,Gk ,Yk (k¼ 1,2,3) are dual variables.
Based on Equation (18), the following augmented Lagrangian function is

provided to facilitate the establishment and solution of the subsequent ADMM, as in
Equation (19).

L X k ,
~X k ,Qk

� 3
k¼1,M


 �
¼
X3
k¼1

akjjX kðkÞjjrk þ
X3
k¼1

bkjjQkjj1 þ
X3
k¼1

�
qk
2
jjX kðkÞ �MðkÞjj2F

þ hX kðkÞ �MðkÞ ,T kðkÞi þ kk
2
jj ~X kðkÞ �MðkÞjj2F þ h ~X kðkÞ �MðkÞ ,GkðkÞi

þ lk
2
jjQk � Sk ~X kðkÞjj2F þ hQk � Sk ~X kðkÞ, Yki

�
(19)

where jj�jj2F is the penalty term and qk, kk, lk > 0 are the penalty parameters.
Essentially, the augmented Lagrangian adds penalty terms to the Lagrangian multiplier
method to ensure the convergence of the function and the robustness of the dual
ascent method.

So far, we have transformed the large-scale tensor completion problem in Equation (19)
into the following subproblems, which can be solved iteratively and respectively.

X lþ1
k :¼ arg minX L X lþ1

k , ~X l
k ,Q

l
k

h i3
k¼1

,Ml

� �
,

Qlþ1
k :¼ arg minQ L X lþ1

k , ~X l
k ,Q

lþ1
k

h i3
k¼1

,Ml

� �
,

~X lþ1
k :¼ arg min ~X L X lþ1

k , ~X lþ1
k ,Qlþ1

k

h i3
k¼1

,Ml

� �
,

Mlþ1 :¼ arg minM L X lþ1
k , ~X lþ1

k ,Qlþ1
k

h i3
k¼1

,Mlþ1

� �
(20)

where we sequentially perform recurrent updates for each k (k¼ 1,2,3) in the order from
top to bottom. When the lth and lþ 1th updates satisfy jjX lþ1 �X ljj2F=jjPXðZÞjj2F < e,
the algorithm is considered to have converged, and the tensor X is output as the final
result. Algorithm 1 presents the specific steps for solving the ST-LRTC sub-problem in
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Equation (20) using the ADMM. For better flow of the paper, we have moved the
detailed solution to the Appendix.

Algorithm 1 Solving ST-LRTC for Traffic Data Imputation

Input: Traffic data tensor Z 2 R
M�T�D, Parameters a, b, q, k, l, h, Spatio – Temporal

constraint matrices Sk (k¼ 1,2,3);
Initialize: PXðX0

kÞ ¼ PXð~X0
kÞ ¼ PXðM0

kÞ ¼ PXðZÞ, T 0
k ¼ G0

k ¼ 0 2 R
M�T�D (k¼ 1,2,3),

Y0
1 ¼ 0 2 R

M�TD,Y0
2 ¼ 0 2 R

T�MD,Y0
3 ¼ 0 2 R

D�MT , d, q, k, l, e, MaxIter, Iter¼ 0;
While not converged and Iter � MaxIter do

Update penalty parameters via (A.16);
For k¼ 1 to 3 do

Update tensors Xk via (A.7);
End For

Update matrices Qk via (A.10);
For k¼ 1 to 3 do

Update auxiliary tensors ~Xk via (A.12);
End For
Update tensors M via (A.14);
Update dual variables via (A.15);
Iter ¼ Iterþ 1;

End While
Output: Traffic tensor data X after imputation.

5. Experiments

We select an urban traffic speed dataset and conduct experiments with different miss-
ing cases to demonstrate the superior performance of the proposed ST-LRTC method
in complex urban scenarios.

5.1. Dataset

Xi’an urban traffic speed data (XA data): The experiments adopt the average driving
speed of 500 roads in the central city of Xi’an over 30 days in April1, as shown in
Figure 6. The time interval is 10minutes, and 144 observations are collected per day,
which can be constructed as a matrix (500 road segments � 4320 time intervals) or
tensor (500 road segments � 144 time intervals per day � 30 days).

5.2. Experimental setting

5.2.1. Baseline algorithms
We select classic and recently proposed matrix/tensor completion methods as referen-
ces, which have been shown to significantly outperform traditional methods. These
baseline methods can be divided into three categories: matrix decomposition, tensor
decomposition, and LRTC imputation models. The details of the baseline methods are
listed in Table 1. Note that two methods that incorporate spatio-temporal constraints,
TAS-LR (based on matrix decomposition) and GTC (based on tensor decomposition),
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are selected for comparison with ST-LRTC to demonstrate the superiority of the pro-
posed method.

5.2.2. Error measures and configurations
To evaluate the imputation accuracy of the model, we simulate three missing patterns
on the complete dataset with missing rates ranging from 10 to 90% in steps of 10%.
By comparing the difference between the recovered and actual values, we can evalu-
ate the effectiveness of the imputation algorithms using the RMSE and MAPE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðyi � ŷ iÞ2
N

s
, MAPE ¼ 1

N

XN
i¼1

yi � ŷ i
yi

				
				� 100%

where yi is the actual value of the simulated missing locations, ŷ i is the estimated
value of the completion algorithm, and N is the total number of missing values.

In general, when the RMSE and MAPE are smaller, the data imputation accuracy of
the completion algorithm is higher.

Figure 6. The urban transportation road network in Xi’an, China. Brown lines indicate major road
segments in the study area.
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5.2.3. Parameters setting
For the BTMF, TF-ALS, BGCP, HaLRTC, and LRTC-TNN models, we follow the method of
setting ranks described by Chen et al. (2020). For the spatiotemporally constrained
models, we use cross-validation in TAS-LR to select the optimal parameters, whereas
in GTC, we follow the original parameters of the model. To ensure the reliability of the
experimental results, we set the maximum number of iterations to 200, and adopt the
following convergence criterion (Chen et al. 2020).

jjX lþ1 � X ljj2F
jjPXðZÞjj2F

< e or
jjX lþ1 � X ljj2F
jjPXðZÞjj2F

< e,

where X l,X l represents the imputed tensor and matrix after the lth iteration, respect-
ively; Z, Z denote the original missing tensor and matrix data.

Similarly, in the ST-LRTC, some parameters need to be set. We chunk the dataset
for seven days, and perform parameter selection and cross-validation on each sub-
data set to ensure that the parameters are selected reasonably and effectively. We
finally set the truncated nuclear norm ratio h¼ 0.15, the low-rank tensor completion
parameter a ¼ [0.3,0.4,0.3], the parameter used to regulate the spatiotemporal con-
straints bk ¼ 10�5, lk ¼ 10�6 (k¼ 1,2,3), and other penalty parameters qk ¼10�5, kk ¼
10�5 (k¼ 1,2,3).

5.3. Comparisons with random missing pattern

Firstly, we verify the superiority of our algorithm for a random missing pattern. As pre-
sented in Table 2, we evaluate the accuracy of the imputation results for the different
algorithms with missing rates ranging from 10 to 90% in steps of 10%.

Compared to the baseline models, ST-LRTC yields the best completion results with
the lowest error. Specifically, the imputation accuracy is relatively improved by 6.0%
on average compared to the LRTC-TNN model, and by more than 30% compared to
other state-of-the-art methods.

Furthermore, when comparing the performance of the three types of models under
different missing rates, it is observed that the LRTC models (HaLRTC, LRTC-TNN, and
ST-LRTC) outperform other baseline models when encountering low missing rates. This
indicates that the imputation methods based on tensor nuclear norm relaxation can
better capture the low-rank properties of traffic data.

However, the RMSE/MAPE values of HaLRTC and LRTC-TNN fail to achieve the
desired results when the missing rate is greater than 60%, whereas our ST-LRTC
method is able to maintain a low RMSE/MAPE, even in extreme missing cases. These
results illustrate that the combination of tight low-rank estimation and low-dimen-
sional spatiotemporal embedding makes the model more robust and better able to
cope with traffic data imputation in different missing scenarios.

For a more intuitive representation of the reliability of the proposed method under
extreme absences, Figure 7 shows the errors between the imputation results and
observations for the morning peak (8:00 a.m.), off-peak (2:00 p.m.), and evening peak
(6:00 p.m.) periods in Xi’an on April 1, 2018.
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Experimental results show that the ST-LRTC model based on spatiotemporal low-
dimensional embedding can accurately reconstruct missing data while maintaining the
original structure and characteristics of the traffic data. Despite the missing rate reach-
ing 80%, more than 86% of the road segments still have errors of less than 3 km/h
(RMSE) and approximately 97% had errors of less than 6 km/h (2RMSE).

In summary, the results indicate that the proposed method can effectively recon-
struct missing data with strong stability, albeit with large missing rates.

5.4. Comparisons with non-random missing patterns

Furthermore, we investigate the recovery performance of the proposed algorithm in non-
random missing (NM) scenarios, i.e. spatial and temporal missing patterns. Figure 8 shows
the relative errors of the different imputation algorithms at different missing rates.

Overall, ST-LRTC has better and more stable imputation results than the baseline
models. Specifically, ST-LRTC achieves a performance similar to that of LRTC-TNN at
low missing rates. However, owing to the full utilization of the topological structure of
road networks and the spatiotemporal characteristics of traffic flow, ST-LRTC achieves
much better performance under high absences.

In addition, by combining the RM results in Section 5.3, it can be seen that the
MAPE in the RM case is lower than that in the NM case with respect to different miss-
ing patterns. All baseline models can achieve the desired imputation accuracy in the
RM cases. However, under NM, particularly in extreme cases (missing rate 	 70%),

Figure 7. Imputation results of XA-data under extreme RM cases (80%) at different time periods.
(a) Map of missing road states, with gray roads indicating the presence of missing data. (b) Observed
traffic states. (c) Traffic states after imputation. (d) Error distribution.
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most baseline models are less accurate (MAPE reaches more than 60%). This indicates
that data imputation in NM cases tends to be more challenging than in RM cases, and
the baseline models do not achieve desirable results in NM cases. In contrast, our ST-
LRTC method can achieve higher stability in different types of extreme absences, and
the imputation relative errors (MAPE) are all guaranteed to be less than 15%.

In-depth, we compare two baseline methods that incorporate spatiotemporal con-
straints with ST-LRTC. TAS-LR is a matrix-based imputation algorithm vulnerable to

Figure 8. Relative errors at different sampling rates under non-random missing patterns. (a) Spatial
Missing Pattern (SM). (b) Temporal Missing Pattern (TM).
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structural deficiencies. Notably, TAS-LR is particularly ineffective for the imputation of
the SM pattern because structural absences destroy the original intrinsic structure of
the data matrix, leading to the non-convergence of iterations. For GTC, on the one
hand, the graph tensor singular value decomposition requires a predefined definition
of rank. However, when only a few observations are available, an improper ranking
may lead to model divergence. On the other hand, because urban road states are
always variable and feature-rich, the 14th-order Toeplitz matrix used in the GTC may
smooth out detailed information. Thus, it is not suitable for data imputation of
urban roads.

Thorough experiments demonstrate that the proposed ST-LRTC model achieves bet-
ter imputation results for all missing patterns, and is more applicable to urban traffic
data imputation with complex topologies and variable states.

5.5. Ablation studies

In what follows, we illustrate the positive effect of spatio-temporal manifold embed-
ding on low-rank tensor completion from the perspective of error distribution, and
demonstrate the superiority of the K-order proximity-based ‘static road topology &
dynamic traffic flow’ co-driven approach.

5.5.1. The advantages of spatio-temporal manifold embedding
To further evaluate the effect of introducing spatial and temporal manifold embed-
ding, we compare the distributions of imputation errors under extreme missing rates
(80%) before and after incorporating the constraints, as shown in Figure 9.

As can be seen, compared with the LRTC-TNN model, the distributions of ST-LRTC
imputation error are all ‘leaner and taller’ and more clustered around 0. In other
words, the imputation results are more accurate and stable with the spatiotemporal
constraints.

Furthermore, as shown in Figure 10, we compare the changes in the imputation
errors on each segment before and after introducing the spatiotemporal constraints
under RM (the same results under NM) from different time scales. It can be seen that
the accuracy of data imputation is improved for both the medium (one week) and
long (one month) time periods. For daily data imputation, we also obtain a higher
accuracy for the majority of road segments.

5.5.2. The superiority of ‘static road topology & dynamic traffic flow’ co-driven
method
In ST-LRTC, we propose a ‘static & dynamic’ co-driven weighted adjacency (WA) matrix
based on K-order proximity, which combines traffic flow similarity with the topology
of the real road network. Here, we analyze the superiority of doing so by comparing
the accuracy with that of a static adjacency (SA) matrix (consisting of 0/1) using only
topology, and a traffic correlation (TC) matrix (calculated by Pearson coefficient pij)
using only data similarity. Taking the SM pattern as an example, Table 3 lists the
imputation comparison errors using TC, SA, and WA.
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Figure 9. Distribution of the imputation error before and after introducing spatiotemporal con-
straints (8:00 a.m. and 6:00 p.m.) (a) RM. (b) SM. (c) TM.
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The experimental results indicate that the ST-LRTC constructed using WA can
achieve the best overall imputation accuracy. Specifically, the spatial matrix construc-
tion method, which considers the actual road topology, has better imputation results
than methods using only the data correlation between road segments. The WA, in
turn, is more flexible than the SA and better reflects the different degrees of traffic
flow transmission and feedback between adjacent roads.

The results reveal that the improvement in WA accuracy becomes more obvious,
particularly when the missing rates are 	 70% (underlined in the table). This is due to
the fact that high missing rates imply limited valid data for road segments, and traffic
data imputation is more dependent on surrounding adjacent roads. The results indi-
cate that the ST-LRTC model, which incorporates a weighted adjacency matrix, can
better reconstruct traffic data with high missing data rates.

5.6. Discussion

5.6.1. Computation time
Admittedly, in terms of algorithmic efficiency, the introduction of spatiotemporal con-
straints increases the running time of individual loops. However, the prior knowledge
it provides can facilitate the convergence of the algorithm, thus reducing the number
of iterations and shortening its overall running time.

In summary, the proposed algorithm can obtain excellent results both in terms of
imputation effect and operation efficiency, and can be more applicable to traffic data
imputation in complex urban scenarios.

5.6.2. Extensibility
Traffic speed data imputation, considering its representativeness, is selected as the
scenario for data completion and spatial analysis in this study. Thorough experiments
demonstrated that the incorporation of spatiotemporal analysis can enhance the
adaptability of the tensor completion model to complex topologies and variable
states.

Indeed, traffic speed data imputation is a typical application scenario of urban sens-
ing. These can be replaced by other types of geographic data. For example, we can
denote origin-destination (OD) flow by a tensor XOrigin�Destination�Time to mine crowd

Figure 10. Comparison of the imputation errors of each road segment before and after introducing
spatiotemporal correlations under the missing rate of 80%. (a) 1-month. (b) 1-week. (c) 1-day.
Green indicates that the accuracy of data imputation has improved, and red indicates the opposite.
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movement patterns (Cao et al. 2020), or represent traffic flow data with a tensor
XRoad�Time�Day to facilitate accurate traffic state imputation and forecasting (Zhou et al.
2019).

In terms of theoretical methods, embedding local spatiotemporal manifold features
into global low-rank tensor models can facilitate multi-scale and fine-grained percep-
tions of urban scenes. The multi-perspective analysis framework proposed in this study
can also be applied to other aspects of GIS, such as travel pattern mining (Cao et al.
2020, Gao et al. 2019), social hotspots detection (Li et al. 2018), and air quality fore-
casting (Xu et al. 2019, Zhang et al. 2022).

Overall, incorporating tensor models into geospatial analysis provides a better way
to deal with spatiotemporal field data, reveal the intrinsic structure of complex spatio-
temporal data, and capture interdependencies in multiple dimensions. It also enables
a unified framework for irregular spatiotemporal fields from data organization, man-
agement, and imputation to data analysis and application (Li et al. 2022). On the other
hand, the incorporation of geographic thinking endows tensor models with explicit
representations of spatiotemporal patterns, thereby facilitating the practical applica-
tion of high-dimensional analytical methods in real scenarios, such as urban percep-
tion and pattern analysis.

5.6.3. Threats to validity
As stated in Section 4, our ST-LRTC method can achieve higher stability in different
types of extreme absences. However, the degree of regularity of urban traffic states is
an influential indicator of the model accuracy. The more volatile the traffic states, the
more difficult it is to recover missing data using the observed data, and the less accur-
ate the model. Therefore, assessing whether missing data can be accurately completed
(i.e. recoverability) is also an essential issue.

Moreover, the incorporation of spatiotemporal features inevitably increases the
number of model parameters. The selection of the parameters may also affect the
generality of the results and their application in other contexts.

6. Conclusion and future work

Many existing approaches for geographic analysis are based on the assumptions that
1) data are complete, and 2) data are uniformly distributed in space and time.
However, the incomplete nature of geographic data significantly affects the accuracy
of many GIS models. Therefore, data imputation, particularly for complex urban scen-
arios, is a critical and essential part between geographic big data collection and
application.

In this study, we considered urban traffic as a representative research scenario for
data imputation, considering its consistent data dimensions, significant time-series
characteristics, and complex spatial association features. To recover missing traffic
data, the Spatio-Temporal constrained Low-Rank Tensor Completion (ST-LRTC) was
proposed in this paper and applied to urban traffic speed data imputation.
Specifically, we adopted a manifold embedding approach to depict the local geomet-
ric structure across each mode and proposed a ‘static road topology & dynamic traffic
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flow’ co-driven approach for road network spatial similarity metrics. Further, we
embedded the ‘local’ spatio-temporal manifold regularization terms into the ‘global’
low-rank tensor model, and developed a joint imputation method with ‘static and
dynamic, global and local’ multiple views for urban traffic data.

Urban traffic speed data (XA data) were selected for the experiment, and the results
indicated that our ST-LRTC method achieved more accurate imputation results under
various missing rates and patterns, and the imputation relative errors (MAPE) were
guaranteed to be less than 15%. Thorough experiments demonstrated that the spatio-
temporal feature embedding approach and the K-order proximity-based ‘static-
dynamic’ co-driven spatial similarity metrics developed in this paper can enhance the
adaptability of the imputation model to complex urban topology and variable states.

However, because of the limited information considered in this study, the process-
ing of a single type of dataset is no longer sufficient to achieve accurate data recovery
under sudden circumstances. Therefore, in future studies, we will attempt to incorpor-
ate more data (e.g. event and POI information) to make the imputation results more
realistic.
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Appendix A. Solving ST-LRTC for traffic data imputation

For ST-LRTC model, the variables optimization problem in Equation (20) can be solved by alter-
native iterations, in which the superscript l denotes the current iteration step.
a. Updating tensors Xk (k¼ 1,2,3)

For each k, the update of tensor X k can be expressed as:

X lþ1
k :¼ arg minXk akjjX lþ1

kðkÞjjrk þ
qk
2
jjX lþ1

kðkÞ �Ml
ðkÞjj2F þ hX lþ1

kðkÞ �Ml
ðkÞ,T

l
kðkÞi
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2
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jjMl

ðkÞjj2F þ hX lþ1
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l
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l
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:

(A.1)

Further, when minimizing tensor X k, tensor M can be considered as an invariant, i.e.
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(A.2)

Then the above optimization problem can be solved by following Lemma 1.

Lemma 1 (Chen et al. 2020, Cai et al. 2010) For any a, q> 0, Z 2Rm�n, and r 2Nþ where r
<minfm, ng, an optimal solution to the problem

min
X

ajjXjjr þ
q
2
jjX� Zjj2F (A.3)

is given by the generalized singular value thresholding

X̂ ¼URa=qV
T (A.4)

where URVT is the singular value decomposition of Z. Therefore, the shrinkage of singular values
can be defined as

Ra=q ¼ diag ðr1,r2, :::, rr, rrþ1 � a=q½ �þ, :::, rminfm,ng � a=q
� 

þÞ
T


 �
(A.5)

where r1, r2, :::, rminfm, ng are diagonal entries of R, and [�]þ denotes the positive truncation at 0
satisfying [x]þ ¼ max (x, 0).

According to Lemma 1, Z corresponds to Ml
ðkÞ � T l

kðkÞ=qk in Equation (A.2). Thus, the shrink-
age of singular values for the problem (A.2) can be expressed as

riðX ðkÞÞ ¼
riðMl

ðkÞ � T l
kðkÞ=qkÞ � ak=qk

h i
þ
, if i > rk;

riðMl
ðkÞ � T l

kðkÞ=qkÞ, otherwise,

8<
: (A.6)

where URVT corresponds to the singular value decomposition of Ml
ðkÞ � T l

kðkÞ=qk , riðMl
ðkÞ

�T l
kðkÞ=qkÞ denotes the i-th diagonal entry of R. To this end, the truncated nuclear norm mini-

mization problem in Eq. (A.2) has a closed-form solution:

Xlþ1
k ¼ foldkðUdiagðrðXðkÞÞÞVTÞ: (A.7)

b. Updating matrices Qk (k¼ 1,2,3)

The optimization of matrices Qks is based on the effect of spatiotemporal constraint matrices
Sks in the auxiliary tensor. The minimization of Qks enables similar traffic states between neigh-
boring moments, adjacent days, and topologically connected segments, and its update equation
can be expressed as:
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Qlþ1
k :¼ arg minQk bkjjQlþ1

k jj1 þ
lk
2
jjQlþ1

k � Sk ~X l
kðkÞjj2F þ hQlþ1

k � Sk ~X l
kðkÞ, Yl

ki
¼ arg minQk bkjjQlþ1

k jj1 þ
lk
2
jjQlþ1

k jj2F � lkhQlþ1
k , Sk ~X l

kðkÞi þ hQlþ1
k ,Yl

ki

¼ arg minQk bkjjQlþ1
k jj1 þ

lk
2
jjQlþ1

k jj2F � lk

�
Qlþ1

k , Sk ~X l
kðkÞ �

Yl
k

lk

�

¼ arg minQk bkjjQlþ1
k jj1 þ

lk
2

				jQlþ1
k � Sk ~X l

kðkÞ þ
Yl
k

lk

				j2F
: (A.8)

For the joint optimization of the L1-norm and the Frobenius norm (the induced matrix norm
of the L2-norm (PENG et al. 2016)), we utilize the method in Liu et al. (2009) to obtain a closed-
form solution of Equation (A.8), as Lemma 2.

Lemma 2 (Liu et al. 2009) For a given matrix V 2Rd�n, the optimal solution X� to the problem:

min
X

kjjXjj1 þ
1
2
jjX� Vjj2F (A.9)

can be expressed as X� ¼ Sk[v], where v is an element of the matrix V, and Sk [x] is a shrinkage
operator defined as Sk½x� ¼ sgnðxÞ �maxfjxj � k, 0g:

X, V in Lemma 2 correspond to Qlþ1
k and Sk ~X l

kðkÞ � Yl
k=lk in Equation (A.8), respectively.

Thus, a closed-form solution to the optimization problem Equation (A.8) can be given by

Qlþ1
k :¼ arg minQk

bk
lk

jjQlþ1
k jj1 þ

1
2
jjQlþ1

k � Jlkjj2F

¼ sgnðJlkÞ �max jJlkj �
bk
lk

, 0
� � (A.10)

where Jlk ¼ Sk ~X l
kðkÞ � Yl

k
lk
:

c. Updating tensors ~X k (k¼ 1,2,3)

~X ks are mainly used to perform auxiliary updates to the incorporated spatiotemporal con-
straints, so the optimization requires a balance between the auxiliary tensor M (connected to
the original data Xk) and each spatiotemporal constraint matrix Sk, i.e.

~X lþ1
k :¼ arg min ~X k

kk
2
jj ~X lþ1

kðkÞ �Ml
ðkÞjj2F þ h ~X lþ1

kðkÞ �Ml
ðkÞ ,Gl

kðkÞi þ
lk
2
jjQlþ1

k � Sk ~X lþ1
kðkÞjj2F þ hQlþ1

k � Sk ~X lþ1
kðkÞ, Yl

ki

¼ arg min ~X k

kk
2
jj ~X lþ1

kðkÞ � ðMl
ðkÞ �

Gl
kðkÞ
kk

Þjj2F þ
lk
2
jjSk ~X lþ1

kðkÞ � Qlþ1
k þ Yl

k

lk

 !
jj2F

(A.11)

Then, the optimization update for each ~X lþ1
k is

kk ~X lþ1
kðkÞ �Ml

ðkÞ þ
Gl
kðkÞ
kk

 !
þ lkS

T
k Sk ~X lþ1

kðkÞ � Qlþ1
k þ Yl

k

lk

 ! !
¼ 0

) ~X lþ1
k ¼ foldk ðkk þ lkS

T
kSkÞ�1ðkkMl

ðkÞ � Gl
kðkÞ þ lkS

T
kQ

lþ1
k þ STkY

l
kÞ


 � (A.12)

d. Updating the auxiliary tensor M

The auxiliary tensor M optimization equation can be obtained from Equation (20), connecting
the original data tensor Xk and the auxiliary tensor ~X k (k¼ 1,2,3),
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Mlþ1 :¼ arg minM
X3
k¼1

qk
2
jjX lþ1

kðkÞ �Mlþ1
ðkÞ jj2F þ hX lþ1

kðkÞ �Mlþ1
ðkÞ ,T

l
kðkÞi þ

kk
2
jj ~X lþ1

kðkÞ �Mlþ1
ðkÞ jj2F þ h ~X lþ1

kðkÞ �Mlþ1
ðkÞ ,G

l
kðkÞi

� �

¼ arg minM
X3
k¼1

qk
2
jjMlþ1

ðkÞ � ðX lþ1
kðkÞ þ

T l
kðkÞ
qk

Þjj2F þ
kk
2
jjMlþ1

ðkÞ � ð ~X lþ1
kðkÞ þ

Gl
kðkÞ
kk

Þjj2F

 !

(A.13)

Then the optimization update of the tensor M is

X3
k¼1

qkðMlþ1
ðkÞ �X lþ1

kðkÞ �
T l

kðkÞ
qk

Þ þ kkðMlþ1
ðkÞ � ~X lþ1

kðkÞ �
Gl
kðkÞ
kk

Þ
 !

¼ 0

) Mlþ1
ðkÞ ¼ 1P3

k¼1ðqk þ kkÞ
X3
k¼1

qkX lþ1
kðkÞ þ kk ~X lþ1

kðkÞ þ T l
kðkÞ þ Gl

kðkÞ

 � (A.14)

e. Updating dual variables

Finally, we compute the dual variables and parameters as follows:

T lþ1
k :¼ T l

k þ qk X lþ1
k �Mlþ1


 �
,

Glþ1
k :¼ Gl

k þ kk ~X lþ1
k �Mlþ1


 �
,

Ylþ1
k :¼ Yl

k þ lk Qlþ1
k � Sk ~X lþ1

k


 �
,

(A.15)

qlþ1
k ¼ minðdqlk , qmaxÞ,
klþ1
k ¼ minðdklk , kmaxÞ,

llþ1
k ¼ minðdllk ,lmaxÞ:

(A.16)

where d> 1 is a constant.
So far, we have completed the step lþ 1 update of all variables. When the convergence con-

dition in Algorithm 1 is satisfied, the iteration will terminate.
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